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implications for upper crustal stress and rheology 
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Abstract - -An initially-horizontal surface in the surroundings to a normal fault will, after extension, tilt towards 
the fault if in the hanging-wall or away from it if in the footwall. Coseismic deformation of these surroundings can 
be validly modelled as flexure. Cumulative deformation on geological time scales has been regarded as flexure 
also, but this has led to the apparent paradox that many observed structures require the effective elastic thickness 
of the brittle upper crust to be much smaller than its seismogenic thickness. This article presents a possible 
alternative: that cumulative deformation of the upper crust near some active normal faults may be regarded 
instead as partitioned into separation of the blocks that comprise their surroundings (through the horizontal 
component of dip-slip on the fault) and distributed vertical simple shear in their surroundings, which causes them 
to tilt and takes up the vertical slip on the fault. A generalized profile of tilting near a normal fault, which 
approximates a parabola, can be derived following two assumptions. First, the brittle layer retains an elastic term 
in its rheology on geological time scales, such that it resists arbitrary length changes. Second, the brittle layer 
minimizes its overall vertical deflection, thus minimizing the buoyancy force acting on it. Maximum stress and 
total strain energy associated with observed profiles of tilting are typically smaller for distributed vertical simple 
shear, favouring this mechanism over flexure. 

INTRODUCTION 

DURING deformation of the continental lithosphere, 
extension of the brittle upper crust is typically taken up 
on sets of normal faults with subparallel strike and a 
common slip vector (e.g. Westaway 1991). As extension 
proceeds, normal faults typically develop less steep dip, 

• and beds in the hanging-wall of any normal fault will 
generally tilt towards it. Where faults are spaced by 
~<20 km (comparable to the ~<15 km thickness of the 
brittle layer), blocks between them typically take up 
extension by tilting uniformly in a manner that is some- 
times likened to rigid-body rotation of 'dominoes' 
around horizontal axes (e.g. Jackson 1987). Other 
regions contain more widely-spaced normal faults, up to 
-100  km apart (e.g. Westaway 1991), between which 
blocks do not tilt uniformly. Instead, the parts of each 
block that are within -15  km of any major fault become 
deflected--tilting progressively towards that fault if in 
its hanging-wall or away from it if in its footwall--and 
the remaining parts remain undeformed. 

Extension of the brittle layer in many such regions is 
taken up by slip on normal faults of these types, and 
appears to be largely, perhaps entirely, coseismic. Effort 
has thus been devoted to studying the physics of the 
coseismic deformation, which occurs in a few seconds 
during large earthquakes, and understanding how it 
develops into long-term deformation, both on interseis- 
mic time scales of hundreds or thousands of years and on 
geological time scales of millions of years. Many normal 
faults are approximately planar throughout the brittle 
layer (e.g. Stein & Barrientos 1985, Jackson 1987). 
Coseismic elevation change has been regarded as an 
effect of flexure, and has been modelled as deformation 
around a finite planar cut in an elastic halfspace (e.g. 
SG 14:7-G 

Savage & Hastie 1966, Mansinha & Smylie 1971). This is 
valid, because even on the - 1  year time scale often 
required to survey 'coseismic' deformation, the rheo- 
logy of the crust and upper-mantle lithosphere is domi- 
nated by their elastic properties. The resulting equations 
for elastic deformation of the surroundings to a normal 
fault mean that coseismic elevation change at any point 
at the Earth's surface depends on the coseismic slip at all 
points on the fault. Although these equations thus 
enable observed elevation change profiles to be 
numerically modelled in terms of coseismic slip distri- 
butions, they do not reveal analytically the expected 
shape of these profiles. 

As a result of the requirements for isostatic equilib- 
rium, absolute coseismic hanging-wall subsidence on 
any isolated normal fault is expected (e.g. Savage & 
Hastie 1966, 1969, Jackson & McKenzie 1983) and 
observed (e.g. Stein & Barrientos 1985) to be 5-10 times 
greater than absolute footwall uplift. In contrast, on 
longer time scales the lower crust will deform plastically, 
which will modify the form of profiles of tilting away 
from what is expected for the coseismic case (e.g. King et 
al. 1988). The principal observable effect on interseismic 
time scales is absolute uplift of both the footwall and 
hanging-wall (e.g. Koseluk & Bishke 1981, King et al. 

1988), which over each complete earthquake cycle in- 
creases absolute footwall uplift and decreases absolute 
hanging-wall subsidence relative to the coseismic values, 
such that they may become roughly equal. This process 
appears to be driven to some extent by flow from the 
flanks into the lower crust beneath each normal fault, 
and to some extent by flow from beneath the hanging- 
wall to beneath the footwall (e.g. King et al. 1988). This 
doming has been observed following some large normal- 
faulting earthquakes, such as Fairview Peak and Hebgen 
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Lake in the western U.S.A. (Koseluk & Bishke 1981, 
Reilinger 1986). Some people (e.g. Wernicke 1985, 
Weissel & Karner  1989) have suggested that active 
normal faults may persist to the base of the continental 
lithosphere. If so, such doming would not be expected 
(see e.g. Koseluk & Bishke 1981) and profiles of tilting 
would have much greater width than is typically ob- 
served. In contrast, it seems preferable to adopt the view 
that normal faults die out at the base of the brittle upper 
crust into the plastic deformation of the underlying 
lithosphere. The observation that coseismic and long- 
term deformation typically have the same ~ 15 km width 
requires low 'effective elastic thickness' of the upper 
crust if the long-term deformation is modelled as flexure 
(e.g. King et al. 1988). 

Although long-term footwall uplift and hanging-wall 
subsidence are expected to be roughly equal in the 
absence of erosion or loading, loading of the hanging- 
wall with either water or sediment will usually make it 
subside farther than the distance by which the footwall 
uplifts. The overall relative size of hanging-wall subsi- 
dence and footwall uplift on geological time scales across 
any real active normal fault will thus depend on many 
factors, such as the extents of footwall erosion and of 
sedimentation in hanging-walls and any other topo- 
graphic lows around the fault, and the sediment density. 
These will depend on other factors such as the local rock 
types, average elevation of the Earth 's  surface and 
climate. Because these vary with each fault, recent work 
on the evolution of active normal faults on geological 
time scales has, like for coseismic deformation, mainly 
involved numerical modelling rather than exploring ana- 
lytic solutions for idealized cases. 

King et al. (1988) seem to be the first people to have 
published numerical solutions that involve realistic 
physics on the coseismic, interseismic and geological 
time scales, for the problem of coupling the elastic 
deformation around active normal faults in the brittle 
layer to the underlying plastic deformation. Their 
method determines a full solution for the vertical deflec- 
tion of the Earth's surface, with a limited number of free 
parameters for rheology of the crust and displacement 
on each fault. However,  their long-term rheology did 
not simply comprise an elastic upper crust over a fluid 
lower crust. Instead, the upper crust comprised a lower 
elastic layer overlain by an upper layer that behaved 
differently, being assumed instead to transmit load and 
vertical deflection to the underlying elastic layer. Buck 
(1988) and Weissel & Karner (1989) have independently 
presented similar numerical solutions. Some approxi- 
mations are involved in these numerical methods, the 
validity of which is addressed, for example, by Buck 
(1988). King & Ellis (1990) have developed another 
numerical method,  which involves specifying the stress 
at all points on each fault, but which allows all three 
components of the resulting displacement to be deter- 
mined. 

Others (e.g. Kusznir & Egan 1990, Marsden et al. 
1990, Kusznir et al. 1991) have established a simpler 
numerical approach, the flexural cantilever method,  

which involves assuming values for additional para- 
meters that are not directly observable, such as the width 
of plastic deformation in the lower crust. They treat the 
upper crust as elastic but allow for the possibility that 
localized brittle failure in the surroundings of any nor- 
mal fault may modify bending stress relative to that 
expected for an unbroken elastic layer. 

The different numerical methods make some different 
predictions that are potentially observable. For  
example, Kusznir et al. (1991) predict that, in the 
absence of sediment loading or erosion, long-term foot- 
wall uplift and hanging-wall subsidence are equal pro- 
vided the flow in the lower crust is symmetrical about the 
fault zone. King et al. (1988) predict more complex 
behaviour, where their ratio depends on fault dip and, to 
a small extent,  on the density contrast between the lower 
and upper crust. With 45 ° fault dip and no density 
contrast, they also predict equal footwall uplift and 
hanging-wall subsidence. 

If all or part of the brittle layer deforms by flexure on 
geological time scales, any vertical deflection of the 
surroundings to a normal fault will be accompanied by 
horizontal displacement that is associated with contrac- 
tion or dilation near the top or base of the brittle layer 
(e.g. King & Ellis 1990, Kusznir et al. 1991) (Fig. 1). 
King & Ellis (1990) suggested that this process may 
cause elastic strains of the order of - 0 . 0 7  in the brittle 
layer. However,  other studies indicate that crustal rock 
typically fails in tension at strain ~< 10 -4. This upper limit 
on elastic dilational strain follows since the tensile 
strength of unbroken rock is typically - 1 0  MPa (e.g. 
Kusznir et al. 1991) and its Young's modulus is - 1 0 0  
GPa. Kusznir et al. (1991) suggested also that once 
maximum bending stress in the surroundings to a normal 
fault exceeds - 1  GPa (which, during flexure, will occur 
at bending strain >~10 -2, given Young's modulus - 1 0 0  
GPa),  brittle failure will relieve this high stress. Brittle 
failure may be most important in hanging-walls where 
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Fig. 1. Comparison of distributed vertical simple shear and flexure for 
localized loads applied to initially horizontal beams that are embedded 
in a rigid support at one end. If the aspect ratio (Z/H) of the beam is 
large, it will accommodate loading by distributed vertical simple shear, 
as in (a). If this ratio is small, the beam will accommodate loading by 
flexure, as in (b). Note that in both cases the upper and lower faces of 
the beam develop curved profiles. In (a) the free end of the beam 
remains vertical, whilst in (b) it acquires a slope. In (b) the upper part 

of the beam dilates and the lower part shortens. 



Tilting near normal faults 859 

bending stress causes dilation at shallow depth, making 
tensional failure most likely. Whether this creates a 
single antithetic normal fault or results in pervasive 
fracturing, it will lead to the brittle layer evolving differ- 
ently than if it had not occurred. With the brittle layer 
- 1 0  km thick and elastic bending strain limited to 
~10 -2, elastic bending displacements (relative to the 
local equilibrium position in the absence of bending 
strain) cannot exceed - 5 0  m. They are thus small 
compared with typical throws and heaves on major 
normal faults, which may reach many kilometres. 

Active normal faults typically occupy the uppermost 
-10-15 km of the continental crust, which deforms 
brittlely and is thus expected to have elastic thickness 
-10-15 km. However, many studies have established 
that structures that form following the development of 
substantial heave on normal faults often require much 
smaller 'effective elastic thickness': frequently - 3 - 4  
km, sometimes <1 km (e.g. Buck 1988, Stein etal. 1988, 
King & Ellis 1990). This contrasts with other effects, 
such as deflection of oceanic lithosphere near subduc- 
tion zones and surface loads, which can be modelled 
flexurally with values of parameters that are known 
independently to be reasonable, and which show fea- 
tures such as peripheral bulges that are unequivocally 
caused by flexure. 

Flexure of an elastic layer depends on its flexural 
rigidity, which is proportional to its Young's modulus 
and the cube of its thickness; it does not depend on these 
parameters individually. Reducing 'effective' elastic 
thickness from -10-15 km to - 3  km is thus equivalent 
to reducing Young's modulus by a factor of -100,  from 
-100 to - 1  GPa. The low flexural rigidity or 'effective 
elastic thickness' required to match observed long-term 
deformation may thus be caused by a small Young's 
modulus, not a small elastic thickness. King & Ellis 
(1990) scaled Young's modulus by this factor throughout 
the brittle layer. King et al. (1988) reduced effective 
elastic thickness by assuming instead that only the lower 
part of the brittle layer remains elastic on geological time 
scales. Both these views consequently predict low 'effec- 
tive elastic thickness' on geological time scales regard- 
less of the heave on any particular fault. In contrast, 
Kusznir et al.'s (1991) suggestion, that the observed low 
'effective elastic thickness' on geological time scales 
follows brittle failure at the high bending stress that 
would otherwise accompany the development of ~> 1 km 
of heave, would predict that the surroundings to normal 
faults with smaller heave would show 'effective elastic 
thickness' of the brittle layer comparable to its seismoge- 
nic thickness. Buck (1988) also suggested that 'effective 
elastic thickness' decreases with increasing heave for 
similar reasons, but its value may depend on the curva- 
ture of the brittle layer in each locality rather than being 
uniform. Substantial differences thus exist between 
these views and, although 'effective elastic thickness' is a 
familiar term, its physical meaning has not previously 
been resolved. 

If the shallow part of the hanging wall dilates as a 
result of flexure, and the deeper part contracts, there 

will be a particular depth z0--the depth of the neutral 
fibre--where length is unchanged. In the footwall, the 
shallow part will contract and the deeper part will dilate 
under flexure. If w is the vertical deflection, and w" = 
d2w/dx 2, where x is horizontal position (Fig. 2a), elastic 
bending strain exx at depth z is: 

z )  = (zo  - z ) w " ( x ) .  (1) 

The corresponding bending stress Oxx is: 

exxE (2) 
( Y x x  - -  1 - -  V 2 '  

where E is Young's modulus and v is Poisson's ratio. The 
thin plate approximation usually used to analyse flexure, 
which leads to these equations, assumes that vertical 
stress crzz is zero and shear stress axz is negligible com- 
pared with Oxx. E and shear modulus kt are related as E 
= 2/~(1 + v): withkt = 30 GPa and v = 0.25, E is 75 GPa; 
with,u = 40 GPa, E is 100 GPa. If sustained by flexure in 
a 10 km thick brittle layer (]z0 - zl up to - 5  km) with E 
= 75 GPa, the substantial maximum curvature w" of the 
brittle layer (which, as is shown later, reaches ~>0.03 
km 1 near most normal faults considered) would 
require bending strain up to -0 .1  and bending stress up 
to - 1 0  GPa. Even if the maximum value of IZo- z I 
where deformation remains elastic with this Young's 
modulus were ~< 1 km, maximum values of C~xx would still 
be ~>1 GPa. The sharpness of observed curvature of 
profiles of tilting near normal faults thus also requires 
small 'effective elastic thickness' if it is modelled flexur- 
ally (see also, for example, Buck 1988). Even allowing 
for brittle failure in some parts of the brittle layer, elastic 
bending stress must still reach many hundreds of MPa if 
the observed curvature arises by flexure (Kusznir et al. 
1991). 

The rheology of the brittle layer evidently retains an 
elastic term on geological time scales: it would otherwise 
be unable to support topography. For a difference in 
surface elevation h of adjacent localities in rock with 
density p, the vertical stress ~zz at depth will be - p g h ,  
where g is the acceleration of gravity. With p - 3000 kg 
m -3, the typical maximum - 4  km topography near 
many normal faults (e.g. Westaway 1991) (between the 
top of the basement in the footwall and hanging-wall) 
causes local vertical stress ~<120 MPa: roughly 10 times 
smaller than the maximum bending stress predicted 
assuming flexure with the parameters listed above. Once 
this scale of topography has formed, many normal fault 
zones develop further with additional en 6chelon 
branches (e.g. Westaway 1991), enabling extension to 
continue without adding to the topography, rather than 
by increasing the throw on existing faults. Anderson's 
theory of fault mechanics predicts horizontal stress is 
also no greater than -100 MPa in a - 1 0  km thick brittle 
layer (see, for example, Turcotte & Schubert 1982, 
p. 355). These observations suggest that near normal 
faults the brittle layer may only support stresses 
~<100 MPa on long time scales, and the larger bending 
stresses required for flexure are thus difficult to explain. 
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In other localities, such as Death Valley in California 
(King & Ellis 1990), larger displacements develop on 
individual active normal fault branches, with sharper 
curvature in their surroundings. This may be feasible 
because the lower crust is relatively hot and weak, with 
relatively low viscosity (e.g. Buck 1988). In these cases 
erosion of the uplifting footwall may limit the topogra- 
phy across the fault and hence the vertical stress. Some 
people (e.g. Buck 1988, King & Ellis 1990) have sugges- 
ted that after extreme extension such structures may 
develop into metamorphic core complexes, but the pre- 
cise physical processes responsible have been widely 
debated. Other normal faults develop comparable 
heave and deflection in their surroundings, but these 
surroundings show very gentle curvature, with tilting 
distributed over much greater width. The Mesozoic 
Jeanne d'Arc basin offshore of Newfoundland is a good 
example (see Kusznir et al. 1991). 

Blocks beside any normal fault may thus undergo 
local dilation or contraction, with elastic bending strain 
never greater than -0.01. The horizontal displacements 
associated with this bending will be small compared with 
the heave on many normal faults, which may reach many 
kilometres. Near a normal fault that has taken up 
kilometres of extension, one can thus to a good approxi- 
mation neglect relative horizontal displacements that 
result from such bending, and regard the amount of 
extension across the fault as equal to its heave. If 
horizontal displacements other than the heave itself are 
neglected entirely, displacements of points on each side 
of a normal fault will be vertical only. Such deflection 
varying with horizontal position is equivalent to distrib- 
uted vertical simple shear. 

Following this assumption, the length (in the direction 
perpendicular to a fault) of profiles of tilting will increase 
at all depths within the brittle layer, rather than remain- 
ing constant (as would occur if the brittle layer were 
infinitely rigid) or dilating or contracting above and 
below a neutral fibre (as would occur under flexure), but 
the amount of upper crustal mass within each element 
with horizontal extent dx will remain constant (Figs. 1 
and 2a). Although some length changes in the brittle 
layer are thus inevitable if it takes up vertical shear, its 
finite elastic strength on geological time scales will 
oppose arbitrary length changes. The question thus 
arises: should tilting on either side of a normal fault on 
geological time scales be regarded as flexure that mimics 
vertical shear because horizontal displacements are 
small? Or (as suggested, for example, by Wernicke & 
Axen 1988) is it better to regard it instead simply as 
vertical shear? 

ANALYTIC SOLUTIONS FOR TILTING NEAR 
NORMAL FAULTS 

Buoyancy forces caused by topography will influence 
the form of profiles of tilting of the Earth's surface or any 
other initially-horizontal surface near any normal fault. 
If sediment loading and erosion are neglected, the Moho 

is assumed flat (such that buoyancy forces caused by any 
Moho topography are neglected), and crustal density pis 
assumed uniform, the vertical buoyancy force per unit 
area of the Earth's surface fb will equal the weight of 
crust displaced: 

fb = pgw, (3) 

where w(x) is the vertical deflection and g is the acceler- 
ation of gravity. This force will be upward beneath the 
hanging-wall and downward beneath the footwall. The 
buoyancy force dF b (per unit along-strike length) acting 
between horizontal positions x and x + dx will equalfbdx 
(Fig. 2a): 

dF b = pgwdx. (4) 

~ . .  x:=H x x=O 

(a) 

X A (HO) ~ B (0,0) 

(b) G~ . .  0 =arctan(w'(H)) 

i = H 0 

z,i 

i ...e z 

• ~J-~w"(z=Z)-"  l/rz 
~c) ~ .  e 

Fig. 2. 
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T h e  b u o y a n c y  force  b e t w e e n  x = 0, whe re  d i sp l a c e me n t  
r eaches  ze ro ,  and  x = H ,  is thus:  

F b pgwdx .  (5) 
0 

H o w e v e r ,  if min imiz ing  b u o y a n c y  forces  were  the  only  
cons t ra in t ,  it  wou ld  be  a t t a inab le  wi th  w ( H )  = T and  
w(x  < H )  = 0 (i .e.  wi th  w vary ing  as a s tep  at the  faul t)  
and  Fb = 0. This  wou ld  conflict  with the  subs tan t ia l  
wid th  of  def lec t ion  o b s e r v e d  nea r  rea l  n o r m a l  faults .  

G i v e n  tha t  the  rheo logy  of  the  br i t t le  l ayer  inc ludes  an 
e las t ic  t e rm  on geologica l  t ime  scales,  let  us a ssume tha t  
wi th in  it an e las t ic  res tor ing  force  acts,  which is p ro-  
p o r t i o n a l  to the  length  change  of  a prof i le  across  it  (i .e.  
p r o p o r t i o n a l  to length  O P - O Q  in Fig.  2a). I f  the  br i t t le  
l ayer  ti l ts by  d i s t r ibu ted  ver t ica l  s imple  shear ,  any  ele-  
men t  of  it wi th  ini t ial  l ength  dx will deve lop  final length  
ds = (1 + W'2) 112, w h e r e  w'  = dw/dx.  The  elas t ic  

res to r ing  force  will thus  be  p r o p o r t i o n a l  to f d s  - dx  
(Fig.  2a).  

In  p r inc ip le ,  one  could  solve  the  equa t ion  of  equi l ib-  
r ium for each  e l e m e n t  of  the  br i t t le  l ayer  to ob ta in  the  
def lec t ion  prof i le  w(x)  for  which no resu l t an t  force  acts.  
This  is wha t  is usual ly  done  to ob ta in  f lexural  so lu t ions ,  
given the  a p p r o x i m a t i o n s  and  a s sumpt ions  a l r eady  
n o t e d  (see,  for  e x a m p l e ,  Tu rco t t e  & Schube r t  1982, pp .  
112-119, Rana l l i  1987, pp .  203-210).  H o w e v e r ,  it is 
difficult to do  m o r e  genera l ly ,  for  r easons  d iscussed ,  for  
e x a m p l e ,  by  Buck  (1988). The  a p p r o a c h  fo l lowed  he re  
i n s t ead  looks  for  so lu t ions  tha t  min imize  the  b u o y a n c y  
force  act ing on  the  br i t t le  l ayer  subjec t  to the  cons t ra in t  

Fig. 2. Schematic diagram showing the co-ordinate system used to 
describe profiles of tilting near normal faults, illustrated for a hanging- 
wall. Co-ordinates x and z denote horizontal and vertical position, 
measured from an origin where deflection w(x) reaches zero. w 
increases from zero at x = 0 to T at x = H. In a reference frame fixed 
relative to the origin, the point now at P was originally at Q, and the 
length of the profile has thus increased from the straight line OQ = H 
to the arc length OP = L. dx is an element of length in the x-direction, 
and ds is an element of arc length along the profile. From Pythagoras' 
theorem, ds 2 = dx 2 + dw z. Thus ds = dx(1 + w'2) l/e, where w'(x) = 
dw/dx. (b) Schematic diagram comparing dimensions of regions used 
for integration to obtain elastic strain energy with dimensions of the 
tilting near real normal faults. Integration is carried out over the 
rectangle ABCD with width H and height Z. For distributed vertical 
simple shear w in this rectangle is independent of depth. It represents 
the complex shape BEGJ that indicates the likely true extent of 
deflection in basement in the brittle layer (assuming vertical shear), 
where the arc length BJ (or EG) equals L. This shape has the same 
area as the parallelogram ABEF that has the same area as ABCD. In 
reality, for the fault to remain planar with dip 6, tilt 0 must be the same 
at all depths beside it. The integration thus mimics the assumption that 
tilt at a given distance from the fault is the same, regardless of depth, 
by making tilt the same (regardless of depth) at a given distance from 
the edges AD and BC. (c) An alternative possibility that is not pursued 
here. Tilt is assumed uniform beside the fault, but the width of 
deflection varies with depth, with w reaching zero at all depths beneath 
the same horizontal position (x = 0). This requires w" to increase with 
depth, making r decrease with depth (given equation A18). Uniform 
tilting at the fault requires H(z)/r(z) to be the same at all depths 
(equation A17), requiring r ~ H. From equation (13) L(z)/H(z) is thus 
the same at each depth (i.e. Lz/H z = Lo/Ho), indicating average 
dilation is the same at each depth. This scheme can thus represent a 

more complex form of distributed vertical simple shear. 

on its length.  This  l eads  to  an idea l i zed  profi le  of  t i l t ing,  
which is shown to ma tch  obse rva t ions  r e a s o n a b l e  well  
and  is suff iciently gene ra l  to exp lo re  the  d i f fe ren t  defor -  
m a t i o n  styles  tha t  m a y  cause  such profi les.  T h e  fo rm of  
the  br i t t le  layer  is thus a s sume d  to be  g o v e r n e d  by  the  
need  to min imize  to ta l  b u o y a n c y  force  F b = f p g w d x  
subjec t  to the  cons t ra in t  tha t  prof i le  length  af te r  defor -  
m a t i o n  L = f d s  equa ls  the  a p p r o p r i a t e  final va lue .  This  
can be  ach ieved  by  cons ider ing  the  in tegra l :  

I - w,2) 1,2) I '  = ( p g w  + k(1 + dx,  (6) 
0 

where  k is a L a g r a n g e  mul t ip l ie r .  This  equa t ion  can be  
s impl i f ied  by  dividing th rough  by  k and  subs t i tu t ing  j = 

pg/k  to give 

fH Wt2)I/2) dx IH I = ( jw  + (1 + = f ( w ,  w ' )  dx,  (7) 
0 0 

where  j is a n o t h e r  L a g r a n g e  mul t ip l i e r ,  with d imens ions  
of  r ec ip roca l  length.  O n e  first f inds the  m i n i m u m  of  this 
in tegra l  with j u n d e t e r m i n e d ,  then  finds the  va lue  of  j 
that  gives the  a p p r o p r i a t e  length.  A s  will b e c o m e  c lear ,  
min imiz ing  any funct ion of  this fo rm (where  w(x)  and  
w' (x) a re  cons t r a ined  to reach  ze ro  at  the  same  va lue  of  
x) gives a prof i le  tha t  is a p p r o x i m a t e l y  pa rabo l i c .  

T h e  app l i ca t ion  of  calculus  of  var ia t ions  to de r ive  the  
prof i le  of  t i l t ing tha t  min imizes  the  in tegra l  in equa t ion  
(7) is con t a ined  in A p p e n d i x  A .  T h e  resul t ing  prof i le  is: 

w = r(1 - (1 - x2/r2)l12), ( 8 )  

where  

H 2 + T 2 H 2 
r = - -  ~ (9) 

2T  2 T '  

whe re  H is the  ho r i zon ta l  ex ten t  of  the  def lec t ion  and T 
is the  m a x i m u m  def lec t ion  (a t  x = H ) .  E q u a t i o n  (8) can 
usual ly  be  well  a p p r o x i m a t e d  as: 

w = x2/2r (10) 

because  r is usual ly  much  g rea t e r  t han  H ,  the  u p p e r  l imit  
of  x. H a v i n g  e s t ab l i shed  this gene ra l  fo rm of  prof i les  of  
t i l t ing,  o t h e r  p a r a m e t e r s  can be  de r ived  f rom it. 

The  final l ength  L of  a prof i le  b e t w e e n  x = 0 and  x = H 

will be  

I 
x= H 

L = ds. (11) 
x = 0  

Using  the  exact  fo rm for w(x)  ( equa t ion  8), 

L =  r arcsin  (H)  • (12) 

Us ing  in s t ead  the  a p p r o x i m a t e  fo rm (equa t ion  10), 

L = / - / 1  + gyr  • (13)  

Using  the  a p p r o x i m a t e  fo rm for  w(x) ,  to ta l  b u o y a n c y  

force  Fb ( f rom e q u a t i o n  5) is: 
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Table 1. Some well-documented normal faults 

T H r Z O~xx ax u~m, ax E 1 
Name (km) (km) (km) (km) H/r r /Z  (MPa) (MPa) (MPa) 

Draugen (F) (a) 1.5 10 33 ~<15 0.30 >2.2/ 2.8 162 121 990 
Draugen (F) (b) 1.5 16 85 ~<15 0.19 >5.7/ 2.8 162 194 4080 
Troll (F) 0.2 7.5 70 ~<15 0.11 >4.7/ 8.6 76 43 1580 
Denizli (H) 0.4 6 45 -10  0.13 4.5/ 7.3 95 53 1010 
Cricket Mtn (F) 1.6 10 32 -15 0.31 2.1/ 2.7 250 125 640 
Grand Valley (F) (a) 0.6 7 40 -15 0.18 2.7/ 5.0 200 70 560 
Grand Valley (F) (b) 0.6 9 160 ~15 0.07 10.7/16.5 50 31 3520 
Lost River (F) 1.6 15 70 <20 0.21 >3.5/ 4.0 107 86 2250 
Death Valley (F) ~>7 10 10.6 -10  0.95 1.1/ 2.6 580 308 320 

Jeanne d'Arc (H) 14 110 430 -10  0.26 40 / 3.0 --12 --100 142,000 

F and H after fault names denote footwall and hanging-wall. T, H and r are throw, width of tilting and radius of curvature (r 
being estimated using equation 17). E I is the long-term Young's modulus estimate from equation (17). Z is the brittle layer 
thickness, either known from seismicity (Lost River) or from the spacing of main and antithetic faults (Denizli, Grand Valley) 
or inferred (others). In the column r /Z  the observed value is followed by the limiting value for flexure. If this limiting value is 
larger, distributed simple shear is favoured. ~ax and Oxy ax a r e  the maximum stresses assuming flexure and distributed vertical 
simple shear, calculated for x = H and z 0 = Z/2 assuming Young's modulus 1 GPa (equivalent to shear modulus 0.4 GPa with 
Poisson's ratio 0.25). The Draugen and Troll faults (late Jurassic) are in the North Sea: see Roberts & Yielding (1991) (their fig. 
3 shows locations and figs. 6 and 8 show cross-sections). The Denizli fault (upper Mioeene-Pliocene to present) is in western 
Turkey: see Westaway & Kusznir (in press). The Cricket Mountain and Grand Valley faults are described in the text. The Lost 
River fault (Miocene to present) is mentioned in the text (it slipped in the Borah Peak earthquake); see Stein et al. (1988) (their 
figs. 4 and 5 show its location and a cross-section). The Death Valley fault in SE California was discussed by King & Ellis (1990) 
(their fig. 2 shows a cross-section). The Jeanne d'Arc basin is in the western North Atlantic: see Kusznir et al. (1991) (their fig. 
13 shows a cross-section). 

Fb = .,oHm,, 3. (14) 
6r 

The Lagrange multiplier k, introduced in equation (6), 
satisfies 

or  

j = pg /k  (15) 

k = pgr. (16) 

Suppose Z is the vertical extent of the change in 
profile length from H t o  L on geological time scales, and 
equals the vertical extent of the associated elastic stress. 
For vertical shear Z thus equals the brittle layer thick- 
ness. If El is an estimate for the long-term Young's 
modulus of the brittle layer (a measure of the ratio of its 
cumulative stress to cumulative strain), such that the 
elastic restoring force (per unit along-strike length) in 
the brittle layer equals EI(L - H ) Z / H ,  then from 
equation (6) k will equal E I Z / H .  Hence, 

E l -  p g r H  (17) 
Z 

W i t h p = 3 0 0 0 k g m  - 3 a n d g =  1 0 m s  -2, r - 3 0  km (a 
typical lower limit established later), H - 1 0  km, and Z 
-15  km, El is --1 GPa. This is comparable to the values 
used by King et al. (1988), Stein et al. (1988) and King & 
Ellis (1990), and is - 1 %  of reasonable values for the 
short-term Young's modulus of crustal rock. Values of 
E l vary by a factor of up to - 3  about this value (Table 1). 
Table I also includes estimates of maximum shear stress 
(assuming vertical shear) and bending stress (assuming 
flexure). For the same elastic moduli, vertical shear 
typically requires smaller maximum stress. 

If the surroundings to a planar normal fault take up 

vertical shear on geological time scales, then a well- 
defined relationship exists between the tilt angles of the 
fault and of initially horizontal beds or other surfaces 
adjacent to it (Westaway & Kusznir 1990, in press). If 60, 
d and 0 denote initial and final fault dip and the tilt angle 
of a surface adjacent to the fault that was horizontal 
when extension began (Fig. 2), then: 

tan (0) = tan (do) - tan (d). (18) 

Initial dip 60 of any normal fault whose surroundings 
take up vertical shear can thus be estimated from 6 and 
0. Note that equation (18) typically predicts 0 > d 0 - d, 
and thus differs from the widely-used assumption of 
rigid-body rotation beside any normal fault, where 0 
equals 6o - d. An initially-horizontal surface is thus 
expected to develop the same tilt on both sides of a fault 
provided the fault remains planar with uniform dip 
throughout the brittle layer. Numerical models based on 
flexure also typically predict that beds tilt more than 
adjacent faults (as is clear from careful inspection of 
figures in the various publications), although they do not 
satisfy equation (18) precisely. 

This suggestion of distributed vertical simple shear in 
basement beside normal faults that tilt during extension, 
and the angular relationship that it predicts, differs in 
principle from the geometrical method of Verrall 
(1981)--the 'Chevron construction'--where an exten- 
sional basin is assumed to develop by distributed vertical 
simple shear in soft sediment that collapses onto the 
fixed rigid footwall of a fault that does not tilt during 
extension. This method has been modified to incorpor- 
ate inclined simple shear (White et al. 1986), although 
retaining the assumption of a rigid footwall. In both 
forms it is thus unsuitable for investigating basins above 
planar faults that tilt and cut basement that is the same in 
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the footwall and hanging-wall (see also Kusznir et al. 
1991). 

OBSERVED PROFILES OF TILTING NEAR 
NORMAL FAULTS 

In many localities, tilting of initially-horizontal sur- 
faces may result from the effects of slip on many faults. 
The above analytic solutions cannot conveniently de- 
scribe these regions, which are best investigated nu- 
merically instead. This section therefore covers isolated 
normal faults instead, addressing both cumulative and 
coseismic deformation. 

Cumulative deformation across the Grand Valley fault 
zone, Idaho 

The Grand Valley normal fault zone in the western 
U.S.A. (for location see, for example, Dixon 1978, or 
Anders et al. 1989) has present-day dip is ~55 ° at the 
Earth's surface, and is isolated, there being no other 
major normal fault within ~>25 km on either side. The 
surface of the hanging-wall sedimentary basin, at 1700 
m, is 300 m below this regional level. This basin is 
bounded on the far side by a smaller antithetic fault (the 
Snake River fault), and shows a ~ - 1 0  mgal gravity 
anomaly (Mabey 1985) which can give the maximum 
sediment thickness provided the average density con- 
trast is known. Westaway (1990) assumed -300 kg m -3 
density contrast, which gives ~ 1000 m maximum thick- 
ness, similar to the value reported by Dixon (1978). The 
mountain range in its uplifted footwall rises to ~2400 m. 
If the profile of its topography is projected towards this 
fault to compensate for likely erosion since this fault 
became active, maximum elevation would be -2500 m: 
~500 m above the regional average. This reasoning 
indicates that throw across the Grand Valley fault is 
~1800 m. Beyond this basin and the immediate vicinity 
of the fault in its footwall, the topography is used to 
indicate the profile of a surface that was roughly horizon- 
tal before this fault became active (Fig. 3). 

Both the footwall and the hanging-wall, including its 
part between the two faults, can be matched using curves 
of the form of equation (8). Figure 3(a) has maximum tilt 
- 9  ° on both sides of the main fault. This equal tilting is 
consistent with precisely planar geometry; equation (18) 
gives initial dip - 5 8  °. However, the different r values 
imply different Eb and hence different rheology, which 
is unreasonable as the basement on both sides of this 
fault is the same (e.g. Dixon 1978). Figure 3(b) shows an 
alternative match, with r the same on both sides but with 
tilt slightly different. The excess of hanging-wall tilting is 
consistent with slight listric curvature of the fault at 
depth. Such curvature has been noted on some other 
normal faults that cut basement elsewhere (e.g. West- 
away et al. 1989), and would not be unreasonable. The 
solution in Fig. 3(b) is thus preferable on these grounds. 

Cumulative deformation across the Cricket Mountain 
fault, Utah 

This - 4 0  km long normal fault segment, which has 
been studied by Stein et al. (1988) (see their fig. 6 for 
location), strikes SSW, dips WNW at - 5 2  °, and has 
taken up Neogene extension. Cricket Mountain has 
formed along the central part of its uplifted footwall, 
with summit at 2150 m, 800 m above the surrounding 
basin. The southern part of the well-known Wasatch 
fault (e.g. Schwartz & Coppersmith 1984) has similar 
strike and passes - 5 0  km ESE of Cricket Mountain. No 
structure in between shows significant Neogene exten- 
sion. Farther west, numerous faults that took up sub- 
stantial early Tertiary extension show no evidence for 
significant Neogene activity. There is thus no other 
major active normal fault within - 5 0  km of the Cricket 
Mountain fault. 

Stein et al. (1988) presented results of seismic reflec- 
tion profiling along an E-W line that crosses this fault 
obliquely near its northern end, where both the footwall 
and hanging-wall are buried by young sediment. One 
reflector in the footwall, at depth 1.5 km when ~>10 km 
from the fault, is a 4.2 Ma old basalt flow. Stein et al. 
(1988) interpreted a similar reflector at similar depth 
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(a )  ( b )  

Fig. 3. Observed and predicted profiles of top basement for the Grand Valley profile of Westaway (1990). The Grand Valley 
fault is drawn schematically with 55 ° dip, and vertical distance is relative to the typical -2000 m elevation when far from the 
fault. In this and subsequent figures: X is the horizontal position (measured perpendicular to fault strike) where predicted 
deflection reaches zero; U is the maximum deflection; M is the slope of the fitted curve at the fault; R is the predicted ratio of 
maximum footwall uplift to maximum hanging wall subsidence; and r is the radius of curvature. (a) Profiles assuming the 

same maximum tilt on both sides of the fault. (b) Profiles assuming the same curvature on both sides of the fault. 
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Fig. 4. Observed and predicted profiles of the reflector from the 
Cricket Mountain seismic reflection profile of  Stein et al. (1988). The 
Cricket Mountain fault is drawn with 52 ° dip, and vertical distance is 
relative to the level of the reflector when distant from the fault. This is 
~2000 m below the Ear th 's  surface and thus ~600 m below sea level. 

~>10 km inside the hanging-wall as the same flow. Figure 
4 shows the profile of this interpreted unit (from their 
Fig. 8b) against distance along this profile. Their Fig. 
8(c) indicates that reflections at 6-7 km inside the 
hanging wall are weak, and it is consequently difficult to 
be sure whether they have correctly extrapolated the 
same reflector between this point and the fault. If their 
interpretation is accepted, this fault has taken up ~5 km 
of slip since 4.2 Ma, at average rate ~1 mm year -1, 
similar to rates on other nearby active normal faults, 
including the Wasatch fault (e.g. Schwartz & Copper- 
smith 1984). Given the fault dip, this slip has accom- 
panied ~3 km of heave and ~4 km of throw since 
4.2 Ma. 

Figure 4 shows a fit to the reflector on both sides of the 
Cricket Mountain fault. The ~19 ° predicted maximum 
tilt indicates initial fault dip ~58 °, given the ~52 ° 
present-day dip. Although this match accounts for ob- 
served tilts reasonably well, it underestimates depth of 
the reflector near the fault in its hanging-wall. Several 
factors may contribute to this mismatch. First, the flow 
causing the reflection may not have been flat initially. 
Second, compaction of sediment beneath this flow may 
have distorted it. Third, compaction of the relatively 
thick sediment above this part of the flow would raise 
local sediment density above that typical elsewhere, 
causing additional local loading relative to the ideal used 
to derive equation (8). This would cause greater 
hanging-wall subsidence and less footwall uplift than is 
predicted, in better agreement with what is observed. 
The match in Fig. 4 is comparable to that obtained using 
flexural modelling by Stein et al. (1988) (see their fig. 
11). The principal mismatch features, the overestima- 
tion of observed subsidence over ~31-35 km, and the 
underestimation over ~27-31 km, are indeed common 
to both. 

Coseismic deformat ion across the Los t  River  fault ,  Idaho 

Coseismic elevation change profiles have been sur- 
veyed after several major normal-faulting earthquakes 
(surface-wave magnitude M~ > 6.5, seismic moment M 0 
> 10 × 10 TM Nm). These include: Fairview Peak, Nevada 

(16 December 1954, Ms 7.1, M0 ~53 × 1018 Nm; Doser 
& Smith 1989), Hebgen Lake, Montana (18 August 
1959, Ms 7.5, M0 ~100 x 10 TM Nm; Doser 1985) and 
Borah Peak, Idaho (28 October 1983, M~ 7.3, M0 ~21 × 
1018 Nm; Doser & Smith 1989) in the western U.S.A. ; 
Campania-Basilicata (23 November 1980, Ms 6.9, M0 
~26 × 1018 Nm; Westaway & Jackson 1987) in Italy; 
Corinth (24 February 1981, M~ 6.7, M0 ~11 x 1018Nm; 
Jackson et al. 1982) in Greece; and Edgecumbe (2 March 
1987, M~ 6.6, M0 ~10 × 1018 Nm; Anderson et al. 1990) 
in New Zealand. 

Several factors make most of these data sets unsuit- 
able for testing general theory for tectonic elevation 
change beside a single fault. These include complexity of 
en 6chelon faulting (at Hebgen Lake and Edgecumbe; 
Savage & Hastie 1966, Barrientos et al. 1987, Beanland 
etal.  1990), sparseness (at Corinth; Mariolakos & Stiros 
1987), the presence of antithetic faulting (at Campania- 
Basilicata and Fairview Peak; Romney 1957, Pantosti & 
Velensise 1990), discrepancies between versions of the 
same data set (at Fairview Peak; Reil 1957, Slemmons 
1957, Whitten 1957), and possible contributions from 
landsliding or other superficial processes (at Campania- 
Basilicata and Edgecumbe; Westaway 1987, Beanland et 
al. 1990). Comparison is thus restricted to Borah Peak 
only, for which the data set is of good quality and well- 
distributed across a single planar normal fault. Although 
these data seem unique at present, there is no reason to 
believe that any other isolated planar normal fault would 
not show a similar profile. 

The Borah Peak earthquake ruptured the SE-striking 
Lost River fault in central Idaho (see e.g. Stein & 
Barrientos 1985 for location). The observations in Fig. 5 
are based on a relevelled profile that crossed obliquely 
the principal seismogenic fault segment near its mid- 
point. Uplift of ~30 mm was observed far from the fault 
on both sides. Given that formal uncertainties in elev- 
ation change are ~2 mm, this appears significant. It was 
presumably caused by regional-scale processes that are 
not directly related to slip on this fault, and has therefore 
been subtracted from the profile in Fig. 5. This residual 
elevation change profile shows smooth decreases from 
maxima at the fault to zero <~20 km from it. 

These coseismic elevation changes can be matched 
using curves of the form of equation (8) (Fig. 5). The 

I I I I I I I I I 

NE O ~  /0 ~ @0 @,5" ~0 ~O ~ ~'0 ~'6 "SW 
% 

~.~.~.~,~,~ ~'*?!. .................................. ~ . . . . . . . . . . . . . . . .  , . . . . . . .  

_ 0 . 5  i " ~ "  
~4 "~'~ 

_ 1 . 0  i 
i 

_1.5 m !" i 
Borah Peak, Idaho 17.oi 

I I I i I I I I I I 
Footwoll: Hanging wall: 

X: -3kin r: 750000.Okrn X: 37 km r: 140000.0 krn 

U: 0.267m M: 0.001528 Deg. U: 1.429 m M: 0.008185 Deg. 
l/R: 0.1867 R: 5.357 

Fig. 5. Comparison of a predicted profile with coseismic elevation 
change observations by Stein & Barrientos (1985) for the Borah Peak 

ear thquake.  
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match is comparable to the results of Stein & Barrientos 
(1985) and Barrientos et al. (1987) from elastic dislo- 
cation modelling, which gave 2.2 m typical slip and 49 ° 
fault dip. They thus estimated typical throw and heave as 
-1 .7  and 1.4 m. Aftershocks die out beyond -12  km 
depth (e.g. Richins et al. 1987). The modelling by 
Barrientos etal. (1987) required the main fault to die out 
at -14  km depth. In contrast, teleseismic waveform 
studies by Doser & Smith (1985) suggest centroid focal 
depth for the mainshock was 16 _ 4 km. The precise 
local thickness of the brittle layer is thus unclear. 
Assuming 16 km, with a neutral fibre at 8 km depth, with 
Young's modulus -75 GPa, the -1 .4  x 10 -6 km -1 
hanging-wall curvature in Fig. 5 requires elastic bending 
stress up to - 4  MPa. 

The coseismic tilting has similar width on both sides of 
the Lost River fault. The absolute coseismic displace- 
ment of the hanging-wall, which is - 5  times that of the 
footwall, requires larger r for the footwall than for the 
hanging-wall. Given equation (17), this appears to imply 
that the footwall is much stronger than the hanging-wall, 
which would make no sense as basement on both sides is 
the same (e.g. Stein & Barrientos 1985). The estimates 
of elastic moduli obtained using equation (17), -30,000 
GPa for the footwall and -6000 GPa for the hanging- 
wall, are also unrealistic. It is not surprising that 
equation (17) gives unrealistic estimates in these circum- 
stances, because for coseismic deformation elastic forces 
and displacements are not confined to the brittle layer, 
nor are they uniform within the brittle layer, as were 
assumed to derive this equation. As already noted, the 
observed coseismic ratio of footwall uplift to hanging- 
wall subsidence is explicable as the isostatic response to 
a finite cut in an elastic halfspace, and does not require 
different rheology on either side of the fault. Nonethe- 
less, equation (8) gives a reasonable match to obser- 
vations with a minimum of free parameters, and its 
prediction of bending stress is valid. Although the phys- 
ics of coseismic and long-term deformation differ in 
detail (e.g. King etal. 1988), both depend to some extent 
on the interrelationship between elastic forces and 
buoyancy forces. Equation (8) appears sufficiently gen- 
eral to match both cases. 

ELASTIC STRESS AND STRAIN ENERGY 

This section investigates the elastic strain energy in 
the surroundings to normal faults, assuming that tilting 
follows equation (8). Fits of observed profiles to this 
equation indicate the significance of r, which is typically 
-30  km for cumulative deformation near normal faults 
with T - 1  km, where values of x/r are typically ~<1/3 
(Table 1). Elastic strain energy is estimated in Appendix 
B for the alternative assumptions that any given profile 
of tilting, with radius of curvature r, width H and brittle 
layer thickness Z, arises either by flexure or by distrib- 
uted vertical simple shear. Assuming flexure, strain 
energy is given by equation (B18) that can be approxi- 
mated by equation (B20). Assuming instead vertical 

shear, strain energy is given by double equation (B5) 
that can be approximated by double equation (B8). Let 
W denote the ratio of elastic strain energy for flexure to 
that for vertical shear, with given values of r, H and Z. W 
can be evaluated exactly as the ratio of equation (B 18) to 
double equation (B5). However, the resulting complex 
expression would then be difficult to interpret. If W is 
evaluated approximately instead as the ratio of equation 
(B20) to double equation (B8), it will not differ much 
from the exact estimate. Thus 

o r  

For W >1, 

E Z  2 

W = 4/,( 1 _ 1 , 2 ) H  2 (19) 

W = (1 + I : ) Z  2 
2(1 - v 2 ) H  2 (20) 

Z 
H < [2(1 - v,11/2")] (21) 

If v is -0.25, for W to be > l, H ~0.8 Z. If v is 0.5, for W 
to be >1, H ~<Z. 

The relative strain energies for the two deformation 
styles thus depend on the width of deformation H and 
the brittle layer thickness Z. One would expect the 
brittle layer to use the mechanism that minimizes its 
strain energy. For a given ratio H/r, strain energy for 
flexure is proportional to H Z  3, whereas strain energy for 
distributed simple shear is proportional to H3Z. De- 
creasing H / Z  keeping other parameters constant would 
decrease the energy for simple shear and increase the 
energy for flexure. Provided H / Z  is small enough, more 
energy is required for flexure than for simple shear, and 
one would expect the deflection to be by vertical shear 
rather than by flexure, as in Fig. 1. Because Young's 
modulus and shear modulus are in proportion, this result 
is independent of their values. 

Table 1 examines several normal faults given this 
reasoning. In the active examples, brittle layer thickness 
is known or inferred, and the observed width of defor- 
mation favours distributed vertical simple shear. For the 
late Jurassic examples from the North Sea, brittle layer 
thickness during extension is uncertain. However, it is 
unlikely to have been ~<10 km, which would be required 
for flexure to be favoured. Two values of H are listed for 
the Draugen fault, which provides a possible counterex- 
ample that would favour flexure if the larger alternative 
were adopted. The bed whose tilt profile gives this value 
(see fig. 6 of Roberts & Yielding 1991) is offset around 
-10--15 km from this major fault by several minor faults, 
making it difficult to judge precisely where w reaches 
zero. The Lost River fault may provide another counter- 
example favouring flexure. A range of solutions exists 
for it, depending on the width of deformation H and 
brittle layer thickness Z. The range of H reflects uncer- 
tainty in the local structure, and other uncertainty dis- 
cussed by Stein et al. (1988). The uncertainty in Z takes 
account of the different results discussed earlier. Some 



866 R. WESTAWAY 

Table 2. Parameters for normal faults 
associated with distributed vertical simple 

shear 

,12 O~. ax 

Fault (MPa) (MPa) 

Draugen (a) 400 120 
(Draugen (b)) 1630 790) 
Troll 630 70 
Denizli 400 50 
Cricket Mountain 260 80 
(Grand Valley (a)) 220 40) 
Grand Valley (b) 1410 110 
Lost River 900 190 
Death Valley 130 100 

Shear modulus/z is calculated from El in 
Table 1 assuming Poisson's ratio 0.25. 
oxr ax is scaled from the value in Table 1 
assuming the appropriate value of/~ for 
each fault instead of the standard value of 
400 MPa used in Table 1. 

combinations favour vertical shear (Table 2); others 
favour flexure. 

Because the approximate and exact estimates of strain 
energy differ minimally for H/ r  <-1/3, equation (21) may 
suffice to establish whether  flexure is favoured even in 
some cases when curvature is substantial. However ,  
where H/r  is larger than -1 /3 ,  as at Death Valley, the 
exact expressions must be used instead. Figure 6 shows 
the limiting value of r / Z  for flexure as a function of H/r ,  
assuming strain energy is given by equation (B18) for 
flexure and by double equation (B4) for vertical shear. 
Using values of H and T from King & Ellis (1990), the 
Death Valley footwall lies well inside the field where 
vertical shear is favoured. 

DISCUSSION 

The results of this study may be compared with earlier 
suggestions. They support the view of King et al. (1988), 

Stein et al. (1988) and King & Ellis (1990) that long-term 
deformation of the brittle layer can be modelled with 
Young's modulus typically - 1  GPa. Like these earlier 
studies, this study does not provide a physical expla- 
nation for why long-term Young's modulus is only - 1 %  
of its short-term value. The smaller long-term Young's 
modulus dramatically reduces stress and strain energy 
density from the values that would arise if this parameter  
were larger. However,  because shear modulus and 
Young's modulus are in proportion,  this does not 
affect the ratio of strain energy for flexure and vertical 
shear. 

As already noted, Kusznir et al. (1991) suggested that 
(for flexure) brittle failure when bending stress reaches 
- 0 . 5 - 1  GPa dramatically affects the subsequent evol- 
ution of the brittle layer. They suggested this effect 
becomes significant after a fault has taken up ~> 1 km of 
heave, reducing maximum bending stress and causing 
'effective elastic thickness' to decrease to only a few 
kilometres. However,  several of the faults in Table 1 
have throw (and hence heave, given dips - 4 5  ° ) less than 
1 km, but show similar values of parameters such as r, H 
and El to other faults with larger heaves. Given that the 
hanging-wall curvature that developed in the Borah 
Peak earthquake required bending stress up to - 4  MPa, 
if such stress were to accumulate without interseismic 
relief, - 1 0 0  such earthquakes would create a situation 
approaching the failure conditions, but would account 
for only - 150 m of heave. Kusznir et al. (1991) may thus 
be correct that the evolution of normal faults changes 
dramatically once a heave threshold, determined by 
failure criteria, is exceeded, but this may be - 1 0 0  m, not 

1 km. The faults studied in this article thus all have too 
much heave to test this possibility. Faults with heave 
~<100 m are indeed seldom studied in detail, effort 
usually being directed instead at larger structures that 
are considered more significant. 

The critical respect in which the results of this study 
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Fig. 6. Graph of the limiting value of r/Z for flexure as a function of H/r. If r/Z is smaller than this limiting value, vertical 
shear is favoured instead, as it requires less strain energy. 
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differ from earlier views is the suggestion that the 
principal deformation mechanism of the brittle layer 
around some normal faults with substantial heave is not 
flexure, but vertical shear. For the examples considered, 
this typically requires lower strain energy and maximum 
stress. If the brittle layer deforms by vertical shear, one 
would expect its deflection and tilt to decrease mono- 
tonically to zero, as in equation (8). Flexure allows for 
the possibility of a small peripheral hanging-wall bulge 
and/or footwall sag instead, and the demonstrable pres- 
ence of either would thus be important in establishing 
that flexure occurs instead. However, no convincing 
example appears to have been documented. 

The possibility of localized horizontal contraction in 
the concave-upward footwall 'knee' provides another 
potential criterion to distinguish flexure and vertical 
shear. The Earth's surface in the hanging-wall of any 
normal fault is expected to dilate under both flexure and 
vertical shear. However, in the footwall it is expected to 
contract under flexure but dilate under vertical shear. 
Thus the existence of folds in the footwall knee, with the 
same age as the adjacent normal faulting, would indicate 
contraction and thus confirm flexure. King & Ellis 
(1990) have claimed that such folds exist in footwalls of 
many normal faults in the western U.S.A., which have 
similar width of tilting to the structures considered in this 
article, and cite several examples. However, in some 
cases (e.g. for Death Valley and for the Virgin Mountain 
fault zone in northwestern Arizona) the age of the folds 
is unclear and may be greater than much or all of the 
normal faulting (see e.g. Axen & Wernicke 1989). In 
others, the observed folds are well dated but their 
tectonic setting is unclear. For example, folds reported 
by King & Ellis (1990) as documented by Gilbert & 
Reynolds (1973) in the footwall of the major E-dipping 
normal fault that bounds the eastern front of the Wassuk 
range in NW Nevada are, in fact, -15 km from the fault, 
in the hanging-wall of another E-dipping normal fault a 
few kilometres farther west. Although these folds pre- 
sumably have the same age as the adjacent normal 
faulting, they are thus not necessarily related to footwall 
flexure. As already noted, the Death Valley footwall has 
more likely developed by vertical shear than by flexure, 
and one would thus not expect contraction there any- 
way. 

The results of this study suggest that a mechanism 
exists, which presumably operates on interseismic time 
scales, which converts coseismic deformation (which can 
be validly modelled as flexure) into long-term defor- 
mation (which appears instead to involve vertical shear). 
Others have suggested that pressure solution creep can 
be important within the upper crust on geological time 
scales (e.g. Turcotte & Schubert 1982, p. 335), and may 
provide the mechanism for reducing long-term Young's 
modulus, being driven by stress generated within the 
brittle layer by its coseismic response. The observation 
that the long-term coseismic deformation near any nor- 
mal fault typically have the same width implies that this 
mechanism only operates in localities with coseismic 
displacement. If relaxation (converting coseismic 

flexure to vertical shear) proceeds by such a mechanism 
that occurs at non-zero values of local stress, it may 
proceed regardless of heave, and the surroundings to 
any normal fault may thus never approach the con- 
ditions for brittle failure. 

If one accepts that long-term deformation near a 
normal fault is vertical shear, then three principal deduc- 
tions follow. First, the heave equals the extension across 
the fault. The total extension across any cross-section 
containing many normal faults that cut the brittle layer 
will thus equal the sum of their heaves. Second, dip 
variations of faults and tilting of initially horizontal 
surfaces near them are related by equation (18). The 
usual assumption that tilting of blocks bounded by 
closely-spaced normal faults involves rigid-body ro- 
tation thus appears wrong in principle (see also West- 
away & Kusznir in press). Third, it is shear stress, not 
bending stress, that determines the shape of profiles of 
tilting. Maximum shear stress appears comparable to the 
maxima of horizontal stress and vertical stress caused by 
local topography: these limits may typically both be 
-100 MPa (Tables 1 and 2). 

Some normal-fault-bounded structures are much 
wider than the examples considered in this study. For 
example, the Jeanne d'Arc basin has width H (of syn-rift 
sediments) -110 km, and can be modelled flexurally 
with effective elastic thickness 10 km (Kusznir et al. 

1991), comparable to the seismogenic thickness of the 
brittle layer. A profile across this basin (from fig. 13d of 
Kusznir et al. 1991) has T -14  km, making r -430 km. 
With a neutral fibre at 5 km depth, maximum bending 
strain for flexure would be ~<0.01 and bending stress 
<~1 GPa for Young's modulus 75 GPa. Although near 
the limits, these are feasible values for flexure. It is thus 
reasonable that this basin developed by this process, 
retaining long-term elastic moduli similar to typical 
short-term values. Kusznir et al. (1991) suggested that 
most local extension was taken up by a single normal 
fault, which developed -14  km of heave with final dip 
-55 °. Its throw would thus have been -20  km, -14  km 
of which contributed to syn-rift hanging-wall subsidence 
and the remainder created a - 6  km high footwall 
escarpment that subsequently eroded. The vertical 
stress associated with this -20 km of relief would 
have been 40.6 GPa, comparable to the estimated 
bending stress. Structures on this scale may thus develop 
entirely by flexure, even though narrower examples 
with sharper curvature may develop by vertical shear 
instead. 

It is important to emphasize that the derivation of the 
expected general form of profiles of tilting (equation 8) 
did not address equilibrium considerations, either 
locally or for each fault zone as a whole. Treating the 
surroundings on each side of a fault as a whole, vertical 
equilibrium for the static situation after extension and 
tilting have ceased and shear stress has relaxed involves 
a balance between buoyancy forces and frictional forces 
acting on the fault. For the hanging-wall as a whole, the 
upward buoyancy force F b (per unit along-strike length) 
is balanced by the downward component of friction 
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on the fault. From equation (5), with H = 10 km and 
r = 30 km, Fb is --180 GN m -1. With fault dip 45 ° and 
vertical extent 10 km, the average frictional stress on the 
fault needs to be only - 1 0  MPa. This is much smaller 
than likely limiting values (e.g. Turcotte & Schubert 
1982, pp. 351-357), and can thus be readily supported. 
Full treatment of the equilibrium of each point within 
the brittle layer is difficult, and is beyond the scope of 
this study. 

CONCLUSIONS 

A generalized equation for profiles of tilting near 
normal faults, which gives a reasonable match to obser- 
vations, is derived using calculus of variations. This 
equation is used to investigate whether flexure or dis- 
tributed vertical simple shear causes these profiles for 
cumulative tilting across typical structures that are 
~<15km wide. The same general equation can also 
match coseismic elevation change. For long-term defor- 
mation, vertical shear typically requires less strain 
energy and lower maximum stress, and is thus favoured 
on both criteria. The - 100 MPa maximum shear stress is 
comparable to the maximum vertical and horizontal 
stresses. This long-term deformation can be regarded as 
a combination of repeated coseismic slip plus inter- 
seismic relaxation of bending stress that converts the 
deformation to vertical shear. The observation that the 
widths of the long-term and coseismic deformation 
around normal faults are typically the same, which has 
previously been interpreted following flexural model- 
ling as evidence that the long-term 'effective elastic 
thickness' of the upper crust is low, is explicable instead 
if this relaxation mechanism only operates in localities 
that are displaced coseismically. This is reasonable if the 
relaxation is by a process, such as pressure solution 
creep, that is driven by stress caused by the coseismic 
flexure. 

Acknowledgements--Supported in part by Natural Environment Re- 
search Council Grant GR3/6967. I thank Nick Kusznir for helpful 
discussions, and Roger Buck and Ross Stein for thoughtful reviews 
that prompted numerous improvements to the manuscript. 

REFERENCES 

Anders, M. H., Geissman, J. W., Piety, L. M. & Sullivan, J. T. 1989. 
Parabolic distribution of circumeastern Snake River Plain seismicity 
and latest Quaternary faulting: Migratory pattern and association 
with the Yellowstone hotspot. J. geophys. Res. 94, 1589-1621. 

Anderson, H., Smith, E. & Robinson, R. 1990. Normal faulting in a 
back arc basin: Seismological characteristics of the March 2, 1987, 
Edgecumbe, New Zealand, earthquake. J. geophys. Res. 95, 4709- 
4723. 

Axen, G. J. & Wernicke, B. P. 1989. Reply to comment by Carpenter, 
D. G., Carpenter, J. A., Bradley, M. D., Franz, U. A. & Reber, S. 
J. on "On the role of isostasy in the evolution of normal fault 
systems" by Wernicke, B. P. & Axen, G. J. Geology 17, 775-776. 

Ayres, F., Jr. 1972. Theory and Problems o f  Differential and Integral 
Calculus (2nd edn). McGraw-Hill, New York. 

Barrientos, S. E., Stein, R. S. & Ward, S. N. 1987. Comparison of the 
1959 Hebgen Lake, Montana, and the 1983 Borah Peak, Idaho, 
earthquakes from geodetic observations. Bull. seism. Soc. Am. 77, 
784-808. 

Beanland, S., Blick, G. H. & Darby, D. J. 1990. Normal faulting in a 
back arc basin: Geological and geodetic characteristics of the 1987 
Edgecumbe earthquake, New Zealand. J. geophys. Res. 95, 4693- 
4707. 

Buck, W. R. 1988. Flexural rotation of normal faults. Tectonics 7,959- 
973. 

Dixon, J. S. 1978. Regional structural synthesis, Wyoming salient 
of western overthrust belt. Bull. Am. Ass. Petrol. Geol. 66, 1560- 
1580. 

Doser, D. I. 1985. Source parameters and faulting processes of the 
1959 Hebgen Lake, Montana, earthquake sequence. J. geophys. 
Res. 90, 4537-4566. 

Doser, D. I. 1986. Earthquake processes in the Rainbow Mountain- 
Fairview Peak-Dixie Valley, Nevada, region 1954-1959. J. geo- 
phys. Res. 91, 12,572-12,586. 

Doser, D. I. & Smith, R. B. 1985. Source parameters of the October 
28, 1983, Borah Peak earthquake from body wave analysis. Bull. 
seism. Soc. Am. 75, 1041-1051. 

Doser, D. I. & Smith, R. B. 1989. An assessment of source parameters 
of earthquakes in the cordillera of the western United States. Bull. 
seism. Soc. Am. 79, 1383-1409. 

Gilbert, C. M. & Reynolds, M. W. 1973. Character and chronology of 
basin development, western margin of the Basin and Range pro- 
vince. Bull. geol. Soc. Am. 84, 2489-2510. 

Jackson, J. A. 1987. Active normal faulting and crustal extension. In: 
Continental Extensional Tectonics (edited by Coward, M. P., 
Dewey, J. F. & Hancock, P. L.). Spec. Publsgeol. Soc. Lond. 28, 3- 
17. 

Jackson, J. A., Gagnepain, J., Houseman, G., King, G., Papadimi- 
triou, P., Soufleris, C. & Virieux, J. 1982. Seismicity, normal 
faulting, and the geomorphological development of the Gulf of 
Corinth (Greece): the Corinth earthquakes of February and March 
1981. Earth Planet. Sei. Lett. 57,377-397. 

Jackson, J. A. & McKenzie, D. P. 1983. The geometrical evolution of 
normal fault systems. J. Struct. Geol. 5,471-482. 

Jackson, J. A. & White, N. J. 1989. Normal faulting in the upper 
continental crust: observations from regions of active extension. J. 
Struet. Geol. 11, 15-36. 

King, G. C. P. & Ellis, M. 1990. The origin of large local uplift in 
extensional regions. Nature 348,689-693. 

King, G. C. P., Stein, R. S. & Rundle, J. B. 1988. The growth of 
geological structures by repeated earthquakes: 1. conceptual frame- 
work. J. geophys. Res. 93, 13,307-13,318. 

Koseluk, R. A. & Bishke, R. E. 1981. An elastic rebound model for 
normal fault earthquakes. J. geophys. Res. 86, 1081-1090. 

Kusznir, N. J. & Egan, S. S. 1990. Simple-shear and pure-shear 
models of extensional sedimentary basin formation: Application to 
the Jeanne d'Arc basin, Grand Banks of Newfoundland. In: Exten- 
sional Tectonics and Stratigraphy o f  the North Atlantic Margins 
(edited by Tankard, A. J. & Balkwill, H. R.). Mere. Am. Ass. 
Petrol. Geol. 46,305-322. 

Kusznir, N. J., Marsden, G. & Egan, S. 1991. A flexural-cantilever 
simple-shear/pure-shear model of continental extension: appli- 
cations to the Jeanne d'Arc basin, Grand Banks, and Viking graben, 
North Sea. In: The Geometry o f  Normal Faults (edited by Roberts, 
A., Yielding, G. & Freeman, B.). Spec. Pubis geol. Soc. Lond. 56, 
41-60. 

Mabey, D. R. 1985. Regional gravity and magnetic anomalies in the 
Borah Peak region of Idaho. In: Proc. Workshop 28 on the Borah 
Peak, Idaho, earthquake. U.S. geol. Surv. Open-file Rep. 85-290A, 
680-686. 

Mansinha, L. & Smylie, D. E. 1971. The displacement fields of 
inclined faults. Bull. seism. Soc. Am. 61, 1433-1440. 

Mariolakos, I. & Stiros, S. C. 1987. Quaternary deformation of 
the Isthmus and Gulf of Corinthos (Greece). Geology 15, 225- 
228. 

Marsden, G., Yielding, G., Roberts, A. M. & Kusznir, N. J. 1990. 
Application of a flexural cantilever simple-shear/pure-shear model 
of continental lithosphere extension to the formation of the north- 
ern North Sea basin. In: Tectonic Evolution o f  the North Sea Rift 
(edited by Blundell, D. J.). Oxford University Press, Oxford, 236- 
257. 

Pantosti, D. & Valensise, G. 1990. Faulting mechanism and com- 
plexity of the 23 November 1980 Campania-Lucania earthquake 
inferred from surface observations. J. geophys. Res. 95, 15,319- 
15,341. 



Tilting near normal faults 8 6 9  

Ranalli, G. 1987. Rheology o f  the Earth: Deformation and Flow 
Processes in Geophysics and Geodynamics. Allen & Unwin, Lon- 
don. 

Reil, O. E. 1957. Damage to Nevada highways. Bull. seism. Soc. A m .  
47,349-352. 

Reilinger, R. E. 1986. Evidence for postseismic viscoelastic relaxation 
following the 1959 M = 7.5 Hebgen Lake earthquake. J. geophys. 
Res. 91, 9488-9494. 

Richins, W. D., Pechmann, J. C., Smith, R. B., Langer, C. J., Goter, 
S. K., Zollweg, J. E. & King, J. J. 1987. The 1983 Borah Peak, 
Idaho, earthquake and its aftershocks. Bull. seism. Soc. A m .  77, 
694-723. 

Riley, K. F. 1974. Mathematical Methods for  the Physical Sciences. 
Cambridge University Press, Cambridge. 

Roberts , A. M. & Yielding, G. 1991. Deformation around basin- 
margin faults in the North Sea/mid-Norway rift. In: The Geometry o f  
Normal Faults (edited by Roberts, A., Yielding, G. & Freeman, 
B.). Spec. Pubis geol. Soc. Lond.  56, 61-78. 

Romney, C. 1957. Seismic waves from the Dixie Valley-Fairview Peak 
earthquakes. Bull. seism. Soc. A m .  47, 301-319. 

Savage, J. C. & Hastie, L. M. 1966. Surface deformation associated 
with dip-slip faulting. J. geophys. Res. 71, 4897-4904. 

Savage, J. C. & Hastie, L. M. 1969. A dislocation model for the 
Fairview Peak, Nevada, earthquake. Bull. seism. Soc. A m .  59, 
1937-1948. 

Schwartz, D. P. & Coppersmith, K. J. 1984. Fault behavior and 
characteristic earthquakes: examples from the Wasatch and San 
Andreas fault zones. J. geophys. Res. 89, 5681-5698. 

Slemmons, D. B. 1957. Geological effects of the Dixie Valley- 
Fairview Peak, Nevada, earthquakes. Bull. seis. Soc. A m .  47,353- 
375. 

Stein, R. S. & Barrientos, S. E. 1985. High-angle normal faulting in 
the Intermountain seismic belt: Geodetic investigation of the 1983 
Borah Peak, Idaho, earthquake. J. geophys. Res. 90, 11,355- 
11,366. 

Stein, R. S., King, G. C. P. & Rundle, J. B. 1988. The growth of 
geological structures by repeated earthquakes: 2. field examples of 
continental dip-slip faults. J. geophys. Res. 93, 13,319-13,331. 

Turcotte, D. L. & Schubert, G. 1982. Geodynamics: Applications o f  
Continuum Physics to Geological Problems. Wiley, New York. 

Verrall, P. 1981. Structural interpretation with application to North 
Sea problems. Course notes No. 3, Joint Association for Petroleum 
Exploration Courses (U.K.). 

Ward, S. N. 1986. A note on the surface volume change of shallow 
earthquakes. Geophys. J. R. astr. Soc. 85,461-466. 

Weissel, J. K. & Karner, G. D. 1989. Flexural uplift of rift flanks due 
to mechanical unloading of the lithosphere during extension. J. 
geophys. Res. 94, 13,919-13,950. 

Wernicke, B. 1985. Uniform sense normal simple shear of the conti- 
nental lithosphere. Can. J. Earth Sci. 22, 108-125. 

Wernicke, B. & Axen, G. J. 1988. On the role of isostasy in the 
evolution of normal fault systems. Geology 16, 848-851. 

Westaway, R. 1987. Comment on "The southern Italy earthquake of 
23 November 1980" by Crosson, R. S., Martini, M., Scarpa, R. & 
Key, S. C. Bull. seism. Soc. A m .  77, 1071-1074. 

Westaway, R. 1989. Deformation of the NE Basin and Range prov- 
ince: the response of the lithosphere to the Yellowstone plume. 
Geophys. J. Int. 99, 33-62 (with 1991 correction: 104, 647-659). 

Westaway, R. 1990. Reply to comment by Anders, M. H., Geissman, 
J. W. & Sleep, N. H., on "Northeastern Basin and Range province 
active tectonics: an alternative view" by R. Westaway. Geology 18, 
915-917. 

Westaway, R. 1991. Continental extension on sets of parallel faults: 
observational evidence and theoretical models. In: The Geometry o f  
Normal  Faults (edited by Roberts, A., Yielding, G. & Freeman, 
B.). Spec. Pubis geol. Soc. Lond.  56, 143-169. 

Westaway, R., Gawthorpe, R. & Tozzi, M. 1989. Seismological and 
field observations of the 1984 Lazio-Abruzzo earthquakes: Impli- 
cations for the active tectonics of Italy. Geophys. J. 98,489-514. 

Westaway, R. & Jackson, J. A. 1987. The earthquake of 1980 
November 23 in Campania-Basilicata (southern Italy). Geophys. J. 
R. astr. Soc. 90,375-443. 

Westaway, R. & Kusznir, N. J. 1990. Neogene evolution of the 
Aegean region. Eos 71, 1634. 

Westaway, R. & Kusznir, N. J. In press. Fault and bed 'rotation' 
during continental extension: block rotation or vertical shear? J. 
Struct. Geol. 

White, N. J., Jackson, J. A. & McKenzie, D. P. 1986. The relationship 
between the geometry of normal faults and that of the sedimentary 
layers in their hanging walls. J. Struct. Geol. 8, 897-909. 

Whitten, C. A. 1957. Geodetic investigations in the Dixie Valley area. 
Bull. seism. Soc. A m .  47,321-325. 

APPENDIX A 

DERIVATION OF PROFILES OF TILTING 

One can find a stationary value (which in this case is a minimum) for 
any integral of the form ff(w, w')dx using the first integral of Euler's 
equation (see, e.g. Riley 1974, pp. 332-346). For such an integral to be 
stationary, 

f - w '  0 f  = B ,  (A1) 
aw ~ 

where B is a constant. 
The condition that minimizes the integral in equation (7) in the main 

text is thus 

jw  + (1 + w ' 2 )  I /2  - w'2(1 + w'2) v2 = B (A2) 

dx = B - jw  dw. (A3) 
(1 -- (B - jw)2) 1/2 

This has the solution 

x + c = (1 - (B - jw)2) 1/2 (A4)  

J 

or 

j2(x q.- c) 2 = 1 - (O - jw)  2, (A5) 

where c is a constant of integration. Differentiating equation (A5) 
gives 

2jZ(x + c) 2 = 2j(B - jw)w' .  (A6) 

If x = 0 where w = 0, then 

j2c2 : 1 - B 2 (A7) 

and ifx = 0 where w' = 0, then: 

jc 2 = 0 (AS) 

which requires c = 0 except for a trivial solution. This requires B _+ 1. 
With B = 1, 

l - j2x2 (1 - yw) 2. (A9) 

The solution with B = -1  has the same form but with a change of sign 
forj. 

With B = 1, the boundary condition that w(H)  = T (T  being the 
deflection at the fault--see Fig. 2) givesj = 2T/(T 2 + H 2) or~= 0, the 
latter also being a trivial solution. The  former gives j - 2 T / H  since H 
>> T. If r is defined as l/j, then, typically, r >> H since H >> T, and 

r = (H 2 + T2)/2T ~ H2/2T. (AI0) 

Equation (A4) can then be rearranged such that 

w = r(1 - (1 - x2]r2)l/2). (Al l )  
Thus 

w' = (x/r)(1 - xZ/r2) -1/2 (A12) 

w" = (l/r)(1 - x2/r2) -3/2 (A13) 
and 

w" = (3x/r 3 )(1 - x 2/r z )-5/2. (A14) 

With w << r equation (A9) can be well approximated as 

1 - x2/r 2 = 1 - 2w/r  + O(w2/r2), (A15) 

where O(w2/r 2) means terms of the order of w2/r 2, which are neg- 
lected. This gives: 

w = x2/2r (A16) 

w' = x/r  (A17) 
and 

w"= 1/r. (A18) 
To first order: 

w"'= 3 x / ? .  (A19) 

This approximate solution is thus a parabola with radius of curvature 
r - H ~ / 2 T .  
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A P P E N D I X  B 

E L A S T I C  S T R A I N  E N E R G Y  

This Appendix estimates the elastic strain energy in part of the 
brittle layer near any normal fault that is deflected to accommodate 
slip on the normal fault, under the alternative assumptions of distrib- 
uted vertical simple shear and flexure. 

Strain energy assuming distributed vertical simple shear 

Under  distributed vertical simple shear, at each locality shear strain 
exz = (1/2)w' and shear stress Oxz = l~W '. The resulting strain energy 
density qs equals (/~/4)w '2. Shear stress thus increases towards each 
fault as w' increases, and if the shear strain is uniform at the fault and 
decreases uniformly with distance from it at each depth, it will be 
uniform at all depths within the brittle layer at each distance from the 
fault. Total elastic strain energy (per unit along-strike length) for these 
stress and strain tensor elements is thus 

Os = fqs( x, z) dzdx ,  (B1) 

where z spans 0--Z (the brittle layer thickness) and x spans 0 - H  
(assuming the same width of tilting at all depths; Fig. 2b). With w' 
given by equation (A12), then: 

p fz (n x 2 

as: jz=odZ Jx=or _ (B2) 
Hence, 

With r -- 3H, 

Qs=l~_~_~ I H x x dx (B3) 
X r + X 

Q _ p Z [  . r + H _ 2 H ] .  (B4) s -  y[rmr--  

Qs = - ~ -  [In 2 - 2/3] (B5) 

Qs = 0.003310/zZr (exact). (B6) 

Strain energy for distributed vertical simple shear is thus proportional 
to the thickness of the brittle layer and its radius of curvature. 

An approximation to equation (B1) can be obtained for H/r << 1, 
when w' ~ x/r: 

/z fz fH 
Qs = ~ / dz / x 2 dx (B7) 

4r Jz=o L=o 

Qs - ktZH3 
12r2 (approx.). (B8) 

This does not look like equation (B4). However,  with H = r/3 it gives 

Qs = 0.003086/~Zr (approx.) (B9) 

which differs from equation (B6) by only - 1 2 % ,  the exact estimate 
being the larger. With r>~3H, equation (B8) is thus a good approxi- 
mation to equation (B5). 

The total strain energy for distributed simple shear will be double 
each of the above estimates, taking account of the contribution from 
Crzx and ezx, which equal axz and exz since the stress and strain tensors 
are symmetric. 

Strain energy assuming flexure 

For flexure, bending strain exx and stress Oxx are given by equations 
(1) and (2). Both are proportional to w" and to distance above and 
below the neutral fibre (z - z0). In the absence of brittle failure, z 0 = 
Z/2, and the largest bending stress is expected at the top and base of the 
brittle layer. With w" only a weak function of x in equation (A13), 
bending strain and stress at constant z will vary little as one moves away 
from the fault. Their contribution to strain energy density is thus: 

E(z  - Zo)ZW "2 
qf--  2(1 - v 2) (B10) 

and resulting elastic strain energy is thus 

Q Er 4 z=z d (x=H _1 dx (Bl l )  f 
r - 2(i---L-_ v 2) J:=0 (z - Zo) 2 z Jx=0 ( r2 - x2) 3 

E Z  3 t x=H 1 dx (B12) 
Qf - 24(1- - -  v2)r2 Jx=O (1 - x2/r2) 3 " 

This may be written as: 

E Z  3 
Qf - 24(1 - vZ)r 2J' (B13) 

where 

t 
x=H 1 

J = x=o (1 - x2/r2) 3 dx. (B14) 

To evaluate this, substitute x = r cos (u) to give 
fu=arc cos (H/r) 

J = r / cosec 5 (u) du. (B15) 
JU=~r/2 

This appears worse than (B14), but, fortunately, has been solved (see 
e.g. Ayers 1972, p. 146, equation 27.59): the indefinite integral I of 
cosec 5 (u) is 

3 
I = - 41-cosec 3 (u) cot (u) - ~ cosec (u) cot (u) 

+ ~(ln Icosec (u) - cot (u)l) + c, (B16) 

with c another constant of integration. With the limits of integration in 
equation (B15), noting that cosec (z/2) = 1 and cot (n/2) = 0 and that 
if cos (u) = H/r then cosec (u) = (1 - H2/r2) -1/2 and cot (u) = 
(H/r)(1 - H2/r2) -u2, from equation (B16): 

1 2H 3H 
J + 

o (1 - H2/r2) 2 (1 - H2/r 2) 

_ 3 r l n ( (  1 1 - H / r  /] (B17) 
_ HZ/r2)l/2}J" 

Hence, the resulting elastic strain energy is 

1 1- 2H 3H 
Of = 1-~ [(1 -- H2/r2) 2 + (1 - H2/r 2) 

1 - H/r  EZ3 (exact). (B18) 
- 3 r l n ( ( l  _ H2[r2)a/2)l ( l  _ v2)r2 

As a check, an approximate solution to equation (B l l )  can he 
derived by substituting w" = l/r, the limit when H << r, to obtain: 

E I z=z (x=H 1 
Of : ~ J z = O  (2: -- 2:0) 2 Jx=0 ~-~dx (B19) 

E H Z  3 
Q f -  24(1 - v2)r 2 (approx.). (B20) 

Bearing in mind that In (1 - x) ~ - x  when x << 1, equation (B17) 
simplifies to J = H when H/r << 1. Hence,  the limit of equation (B18) 
with H/r << 1 is the same as equation (B20). For H = rl3 equation 
(B18) gives 

E Z  3 
Qf = 0.01567 (1 - v2)----~ (exact) (B21) 

and equation (B20) gives 

E Z  3 
Qr = 0.01399 (1 - v2)--------~ (approx.), (B22) 

which differ by only ~11%,  the exact estimate again being the larger. 
For flexure, elastic strain energy associated with the axx and exx terms is 
thus expected to be proportional to the width of tilting and the cube of 
brittle layer thickness, and inversely proportional to the square of its 
radius of curvature. 

The Ozz stress tensor element is assumed zero to derive equation (2). 
However,  the axz and azx elements will be non-zero, and will add to the 
strain energy. To estimate their contribution, consider the bending 
moment  M for flexure: 

m ( x )  - EZ3w"(x)  (B23) 
12(1 - v 2) 

The vertical shear force on each element of width dx is F = dM/dx, 
where: 



Hence  

T i l t i n g  n e a r  n o r m a l  f a u l t s  

f 
Z 

F = Crxz dz. (B24) 
z = 0  

F = EZ3w"(x) 
12(1 - v ~  (B25) 

and, since F is not  a funct ion of z, 

EZ2w"(x) 
° x z -  12(1 - v 2) (B26) 

The cor responding  shear  strain is exz = Crxz/(2p), and the strain energy 
density is thus: 

E2Z4w"'(x~ 
qt - 576/~(1 - v2) 2 (B27) 

871  

or, since E = 2/~(1 + v), 

EZ4w"(x~ (B28) 
qt = 288(1 - v2)(1 - v) 

This can be solved approximate ly  using w" f rom equat ion  (A19): 

3EHaZ 5 
Qt - 288(1 - v2)(1 - v)r 6 (approx.) .  (B29) 

For  H = r/3 this gives 

EZ 5 
Qt - 7776(1 - rE)(1 - v)r 3 (approx.) .  (B30) 

Even  when  this is doubled to account  for  the o ther  off-diagonal 
e lements  of the stress and strain tensors ,  its contr ibut ion will be very 
small for  Z <~ r. 


